The Role of the Policy and the Food Environment on Childhood Obesity

Brian Elbel, PhD, MPH

Associate Professor of Population Health and Health Policy, Department of Population Health, NYU School of Medicine and NYU Wagner

Director, NYU Langone Comprehensive Program on Obesity

Assistant Dean for Strategic Initiatives, NYU Langone Health

Design with Intent: Building Environments that Shape Healthy Behavior, 11.3.17
Overview

- Why obesity policy, what does this mean?
- Overview of prior obesity policy work
- Childhood obesity and food access
YOU JUST ATE 26 PACKS OF SUGAR.

All those extra calories bring on obesity, diabetes, and heart disease.

Are you pouring on the pounds? Find out at nyc.gov/health/drinkingfat

NYC Health

CUT YOUR PORTIONS. CUT YOUR RISK.

Call 311 for your Healthy Eating Packet

NYU Langone Health
Calorie Labeling
Change in consumers seeing and using labeling

- Saw calorie information (labels posted)
- Saw calorie information (no labels posted)
- Used calorie information (labels posted)
- Used calorie information (no labels posted)

Source: Cantor et al., 2015
Change in consumers seeing and using labeling

![Bar chart showing the change in consumers seeing and using labeling from July 2008 to Jan-Jun 2014.](chart.png)

- **Restaurants with Calorie Information**
- **Restaurants Without Calorie Information**
The Nanny
You only thought you lived in the land of the free.

Bye Bye Venti
Nanny Bloomberg has taken his strange obsession with what you eat one step further. He now wants to make it illegal to serve “sugary drinks” bigger than 16 oz. What’s next? Limits on the width of a pizza slice, size of a hamburger or amount of cream cheese on your bagel?

New Yorkers need a Mayor, not a Nanny.
Find out more at ConsumerFreedom.com
New NYC regulations change what we can serve you.

What IS changing

You will have to add your own sugar to:

- Large & X-Large hot beverages
- Medium & Large iced beverages

You will have to add your own flavor swirl to:

- Large & X-Large hot beverages
- Medium & Large iced beverages

What's NOT changing

Enjoy a Hot or Iced Latte however you want it.

Enjoy an unsweetened flavor shot in any beverage.

Enjoy your favorite beverage unsweetened, or with sugar substitute and/or dairy product.

Beverage Size Changes

- Hot Chocolate and Dunkaccino®
 Available in Small & Medium only

- Frozen Beverages
 Available in RESIZED
 Small & Medium only

SPLENDA® is a registered trademark of McNeil Nutritional, LLC. ©2013 DD IP Holder LLC. All rights reserved.
NYC SSB Portion Limit Evaluation

The Percentage Shift to 16 Oz. Beverages with Remainder Purchasing 32 Oz.
NYC Public School Water Jets
Water jets background

• In 2009 the NYC DOE launched an intervention to increase access to drinking water by placing “water jets” in school cafeterias.

• By 2016 they were available in approximately 55% of public schools.¹ Goal is for all schools to eventually have them.

• We collaborated with NYC DOHMH and CDC to assess impact of water jets with a subset of 9 intervention and 10 comparison schools during the 2010-2011 academic year.

Study 1: Influence of water jets on water consumption

- **Impact on Water Drinking**
 - 3-fold increase in observed water taking, from ~10/100 students to ~34/100 students

- **Impact on Milk Drinking**
 - Small decrease (~8 fewer events per 100 students) in observed milk taking which was not significant at follow-up

- **Long-term Follow-up**
 - Results were sustained during second round of post period observations, the following school year
Study 2: Impact of water jets on BMI

• Used large administrative dataset, New York FITNESSGRAM (height, weight collected annually from all NYC public school children)

• Small, significant decrease in BMI and likelihood of being overweight/obese

<table>
<thead>
<tr>
<th>Outcome (Boys)</th>
<th>School-Level Fixed Effects</th>
<th>Student-Level Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overweight</td>
<td></td>
</tr>
<tr>
<td>β (95% CI)</td>
<td>-0.9 pp</td>
<td>-1.2 pp</td>
</tr>
<tr>
<td>P value</td>
<td>.003</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Obese</td>
<td></td>
</tr>
<tr>
<td>β (95% CI)</td>
<td>-0.5 pp</td>
<td>-0.5 pp</td>
</tr>
<tr>
<td>P value</td>
<td>.02</td>
<td>.08</td>
</tr>
</tbody>
</table>
Impact of a Government-Subsidized Supermarket
Research site

- Associated Supermarket in the Morrisania section of the Bronx
- 17,000 sq. feet
- Received both financial and zoning incentives
- Ground floor of a new low-income housing complex

- We matched the neighborhood with comparison area also in the Bronx: Highbridge
Did the individuals in the community notice the store?

Noticed a new store in the neighborhood – Parent Sample

<table>
<thead>
<tr>
<th>Morrisania (%)</th>
<th>Highbridge (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>Post 1</td>
</tr>
<tr>
<td>21</td>
<td>38</td>
</tr>
</tbody>
</table>

Logit, * <.1, ** <.05, *** <.01

Noticed a new store in the neighborhood - Adult Sample

<table>
<thead>
<tr>
<th>Morrisania (%)</th>
<th>Highbridge (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>Post 1</td>
</tr>
<tr>
<td>19</td>
<td>33</td>
</tr>
</tbody>
</table>
But, no change in….

• Servings of fruit and vegetables consumed….
• Servings of “unhealthy” snack food consumed…
• At least for the community as a WHOLE…
Food access and childhood obesity

• Food access: generally defined as availability of healthy v. unhealthy food
• This is a prominent aspect of the food environment
• Disparities in food access may have a significant impact on obesity.
• Policy or place-based approaches could be used to alter access
Policies that have attempted to address food access

- Restricting access – generally to food considered unhealthy
 - Los Angeles CA ’fast food ban’
 - Restricting “competitive foods” in schools
- Increasing access – generally to food considered healthy
 - Incentives for supermarkets in “food deserts”
 - Mobile produce carts in “food deserts”
 - Improving access to healthy foods in corner stores
Detailed data on children

- NYC Public School System

- Height and Weight – FITNESSGRAM
 - Started in 2005 – 06 school year
 - Height and weight of (almost) all kids
 - Measured every year

- Administrative student-level data
 - Race/ethnicity
 - Poverty status
 - Geocoded students’ home addresses provided by parents every year

- 2013 n=803,114
Detailed data on food environment

- NYC Department of Health and Mental Hygiene Restaurant Grading Data: Locations of all restaurants, inspected at least yearly.
- NYS Department of Agriculture and Markets, Licensing and Inspection Data: Locations of all other food outlets, inspected approximately yearly.

Food outlet variables:

3. Fast-food restaurants (national and non-chain; 60.1% of all restaurants).
Analyses that moves beyond broad geographies and correlations

For each food outlet type, constructed two food proximity measures from each student’s home and school:

1. Distance to the nearest food outlet.
2. Count of the number of food outlets within a 0.25-miles buffer (about 5 blocks).

And then:

• Role of food environment in childhood obesity outcomes, using census tract fixed effects.
• This means we are only comparing children within the same census tract.
All Food Resources

Population density and food resources
- Fast_food
- Wait_service
- Bodega
- Stores6_15k
- Stores15_30k
- Stores30k_over

Census2010
POP10 / sqkm_area
- 0.000 - 10000
- 10001 - 25000
- 25001 - 50000
- 50001 - 100000
- 100001 - 717200
Fast Food Restaurants
Interpreting distance

• 1 mile =

• 20 North/South blocks
• 264 feet per north/south block

• 7 East/West blocks
• 750 feet per east/west block

• About 5 north/south blocks in .25 miles
Students’ socio-demographic characteristics, 2013

<table>
<thead>
<tr>
<th></th>
<th>Race/ethnicity</th>
<th>Poverty status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total N=803,114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White n=126,961</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black n=211,949</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hispanic n=324,199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asian n=140,005</td>
<td></td>
</tr>
<tr>
<td>Female, %</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Poor Ever, %</td>
<td>84</td>
<td>100</td>
</tr>
<tr>
<td>Foreign born, %</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Special education, %</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>English at home, %</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>Below proficient score on NYSESLAT®, %</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Grade, mean (SD)</td>
<td>5.75 (3.70)</td>
<td>6.03 (3.67)</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>11.48 (3.82)</td>
<td>11.78 (3.79)</td>
</tr>
<tr>
<td>Weight-status, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese (BMI≥95 %tile)</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Overweight (BMI≥85 %tile)</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>Borough, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhattan</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Bronx</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Queens</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Brooklyn</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Staten Island</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: NYU Langone Health
Mean nearest distance in feet to food facilities from home, by race and poverty interactions in 2013

Note: we conducted t-tests for multiple comparisons based on Bonferroni correction. The majority of comparisons were statistically significant except for never poor Black vs. never poor Hispanic for any supermarkets, never poor Asian for corner stores, never poor Hispanic vs. ever poor Asian for fast food restaurants, never poor Asian vs. ever poor Hispanic for wait service restaurants, ever poor Asians, and ever poor Hispanic vs. ever poor Asian for wait service restaurants.

Race/ethnicity
- White
- Black
- Hispanic
- Asian
- Mean

Poverty status
- Poor
- Non-poor

Mean nearest distance in feet:
- Any supermarkets
- Wait service restaurants
- Fast food restaurants
- Corner stores
Mean count within 5 blocks (.25 miles) of food facilities from home, by race and poverty interactions in 2013

Note: We conducted t-tests for multiple comparisons based on Bonferroni correction. The majority of comparisons were statistically significant (p<0.05) except for non-poor White vs poor White (any supermarkets); non-poor Black vs non-poor Asian (any supermarket); non-poor Hispanic vs poor Asian (fast food); and non-poor Asian vs poor Hispanic (wait service) and poor Asian (wait service).
Conclusions on location data

- Enormous access to both unhealthy and healthy food.
 - Black, Hispanic, and Asian students have generally greater access to both healthy and unhealthy
- Detailed and nuanced data can change the story a bit
- Lead to potentially different policy solutions
Access and childhood BMI

- Initial focus: Access to nearest food location
- Primary strategy: Very small area fixed effects
 - Census Tract: Average 3,770 individuals (2010 US Census)
 - Average of 360 students per tract
- Focus on very small differences in distance to nearest food outlet

<table>
<thead>
<tr>
<th>Nearest distance to fast food outlet</th>
<th>%</th>
<th># of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.5 blocks</td>
<td>9.8</td>
<td>74,590</td>
</tr>
<tr>
<td>0.5-1 blocks</td>
<td>14.5</td>
<td>111,056</td>
</tr>
<tr>
<td>1-2 blocks</td>
<td>33.8</td>
<td>257,745</td>
</tr>
<tr>
<td>2-3 blocks</td>
<td>19.2</td>
<td>146,852</td>
</tr>
<tr>
<td>3-4 blocks</td>
<td>10.5</td>
<td>80,311</td>
</tr>
<tr>
<td>4-5 blocks</td>
<td>5.5</td>
<td>42,125</td>
</tr>
<tr>
<td>5-10 blocks</td>
<td>6.6</td>
<td>50,853</td>
</tr>
</tbody>
</table>
Access and childhood BMI

• Obesity, Overweight and zBMI

• Control variables include: census tract fixed effects, year fixed effects, student characteristics, housing characteristics, and other food outlet controls.
 – Student characteristics: age, gender, poverty status, foreign born, special education, and LEP.
 – Residential housing controls: indicators for housing type (1 family residences, 2-4 family residence, 5+ family residences, condos, mixed used buildings, other residential buildings, non-residential buildings) and a public housing indicator.
 – Other food outlet controls: Each model controls for all food types
Distance from home to nearest fast food (as compared to 0.5 blocks)

Ref: 0-0.5 blocks
Mean = 38.1%

Ref: 0-0.5 blocks
Mean = 20.1%

Ref: 0-0.5 blocks
Mean = 58.5%
Distance from home to nearest corner store (as compared to 0.5 blocks)

- Overweight
- Obese
- zBMI

Ref: 0-0.5 blocks
Mean = 37.8%

Ref: 0-0.5 blocks
Mean = 19.9%

Ref: 0-0.5 blocks
Mean = 57.7%
Distance from home to nearest wait service (as compared to 0.5 blocks)

Percent Change

0.5-1 blocks | 1-2 blocks | 2-3 blocks | 3-4 blocks | 4-5 blocks | >5 blocks

-5.0 | -4.0 | -3.0 | -2.0 | -1.0 | 0.0 | 1.0 | 2.0 | 3.0

Overweight
Obese
zBMI

Ref: 0-0.5 blocks
Mean = 37.9%

Ref: 0-0.5 blocks
Mean = 19.7%

Ref: 0-0.5 blocks
Mean = 57.0%
Distance from home to nearest supermarket (as compared to 0.5 blocks)

![Graph showing the relationship between distance from home and percent change in BMI categories (Overweight, Obese, zBMI) across different distance categories (0.5-1 blocks, 1-2 blocks, 2-3 blocks, 3-4 blocks, 4-5 blocks, >5 blocks). The mean values are noted for each category: 0-0.5 blocks mean 37.3%, 0-0.5 blocks mean 20.4%, and 0-0.5 blocks mean 56.3%.]
Strengths

• Food measures for both healthy and unhealthy food outlets
• Food access identified around both home and school
• Individual-level location data
• Some ways to deal with endogeneity
Limitations

• Only NYC data from public school students
• Lack of data on mobile food carts and sidewalk stands
• No consensus in the literature on the most meaningful buffer to use around home and school
• Used straight line versus network distance to characterize food access
• We don’t know quality of food resources, prices
• Still not “randomized”
Implications

• Distance to nearest fast-food restaurants and corner stores were consistently and inversely associated with childhood obesity.

• Efforts to create a healthy food environment in close proximity to home could have a beneficial impact on a child’s weight status.
Summary

• Urban, administrative data from a variety of sources can be useful in understanding health impacts.

• A number of public policies are emerging to impact obesity at a population level:
 • Some are promising, but we don’t fully know their impact.
 • None of them alone will be enough.

• Still need some core work on what is driving the increase in obesity and more rigorous evaluation of policy and other approaches to alter its trajectory.
Collaborators and Acknowledgments

• Tod Mijanovich, PhD – NYU
• Cathy Nonas, MS, RD – NYC DOHMH
• Sohyun Park, PhD, MS – CDC
• Steve Onufrak, PhD – CDC
• Jonathan Cantor, MS – NYU
• Courtney Abrams, MA – NYU
• Lillian Dunn, MPH – NYC DOHMH
• Kristin Cappola, MPH – NYC DOHMH

The NYU NOPREN is a Special Interest Project at the NYU Prevention Research Center (PRC), supported by the Centers for Disease Control and Prevention (CDC) cooperative agreement #1-U48-DP-001946. The findings and conclusions are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Acknowledgements

Co-Is and Staff
Rogan Kersh, PhD
Olugbenga Ogedegbe, MD, MPH, FACP
Tod Mijanovich, PhD
Cathy Nonas, MS, RD – NYC DOHMH
Sohyun Park, PhD, MS – CDC
Steve Onufrek, PhD – CDC
Lillian Dunn, MPH – NYC DOHMH
Kristin Cappola, MPH – NYC DOHMH
Beth Weitzman, PhD, MPA
Beth Dixon, PhD, MPH
Amy Schwartz, PhD
Meryle Weinstein, PhD
Dustin Duncan, ScD
Jessica Athens, PhD
Kosuke Tamura, PhD
Zachary McDermott, MA
Courtney Abrams, MA
Kamila Kiszko, MPH
Jonathan Cantor, MS
Andrew Breck, MPA
Olivia Martinez

Funding
NIH: NICHD (R01 HD070739), NIDDK (R01 DK099241, R01 DK097347), and NHLBI (R01 HL095935)

CDC (NOPREN) supplement to 1-U48-DP-001946

NYS Health Foundation
Robert Wood Johnson Foundation Healthy Eating Research Initiative
Aetna Foundation
NYU-HHC Clinical Translational Science Institute
Yale Rudd Center for Food Policy and Obesity
NYU Wagner Dean’s Fund
THANK YOU
brian.elbel@nyumc.org