Prematurity:
Optimizing Growth in the NICU for Later Metabolic Outcomes

Malki Miller MS, RD, CNSC
Neonatal Dietitian, Maimonides Infants and Children’s Hospital
Adjunct Lecturer of Human Nutrition and Pediatric Nutrition, Brooklyn College/CUNY

Disclosures

There are no financial relationships to disclose.
NICU Nutrition: Goal

To achieve postnatal growth velocity that mimics intrauterine growth rates (AAP)

Prematurity/Catch-up growth

Embleton et al. 2001
Postnatal Growth → Neurocognitive Outcomes

Better NICU weight gain in preterm infants →

- Higher MDI/PDI developmental scores at 18M
- Lower rates of CP
- Lower rates of neurodevelopmental impairment
- Higher developmental scores at 5yr

SGA → Metabolic Outcomes: Barker’s Hypothesis

LBW →
- Higher rates of obesity
- Insulin resistance/DM2
- HTN
- High TG/low HDL
SGA \rightarrow Metabolic Outcomes: Barker's Hypothesis

Rapid ‘catch-up’ growth \rightarrow increased adiposity; linked with adult obesity

Prematurity \rightarrow Metabolic Outcomes

Prematurity \rightarrow
- Higher visceral adiposity
- Decreased insulin sensitivity
- Higher blood pressure

?? related to rapid catch-up growth
Prematurity/SGA → Metabolic Outcomes: Summary

- SGA → early signs of metabolic syndrome
- SGA/rapid catch-up growth → early signs of metabolic syndrome
- Prematurity → early signs of metabolic syndrome, ?? related to catch-up growth

Prematurity = nutrient-restricted fetus

Preterm babies: ??high IUGR rates
NICU nutrition inadequate?
[fetal/NICU environmental stressors]

Catch-Up Growth:
Neurocognitive Development vs. Metabolic Syndrome?
I’m a NICU Nutritionist.

What’s the Bottom Line?

Nutritional Management in NICU

- NICU Nutrition: Crash Course
- Nutritional strategies: Then vs. Now
- Optimizing Kcal vs. Protein; protein-energy ratios
- Our NICU research
NICU Nutrition Crash Course: Nutrition Timeline

Parenteral Nutrition

Transitional Period

Enteral Nutrition

BIRTH

Start TPN

Trophic feeds

1EN, ↓PN
TF 140-150 ml/k/d

Advancing EN 100-160 ml/k/d

TPN d/c’ed; human milk fortifier added to breastmilk

Goal EN 160-180 ml/k/d

DISCHARGE

Enteral Feeds: breastmilk/donor breastmilk (with HMF), preterm infant formula
GOAL:
Optimize Nutrition at each step to:

(1) MAINTAIN TARGETED NUTRIENT INTAKES →
MAINTAIN TARGETED GROWTH RATES

(2) AVOID NEED FOR CATCH-UP GROWTH

NICU Nutrition Timeline: Old vs. New Trends

Old Guidelines:
Metabolic immaturity →
Slow dextrose, IL advancement
Lower protein – renal function??

New Guidelines:
more aggressive nutrient provision
“Starter TPN” – higher protein, promotes anabolism
Old Guidelines:
- Breastmilk with HMF
- High kcal formulas
- Fat/CHO modulars
- Replacing EBM with higher kcal formulas

New Guidelines:
- Breastmilk – encourage
- High protein HMF added to EBM
- Protein modulars – added to EBM
- Higher-protein formulas
- Protein-energy ratios
- Linear growth, HC growth
- BMI curves

NICU Nutrition Timeline: Old vs. New Trends

- Poor growth
- decreased kcal/protein provision
- decreased BUN
- Growth failure at discharge: 4x more likely

JPEN J Parenter Enter Nutr; 2013
NICU Nutrition Timeline: Old vs. New Trends

<table>
<thead>
<tr>
<th></th>
<th>Old Guidelines</th>
<th>Revised Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to write PN order?</td>
<td>TF 140 as if infant NPO; run PN at lower rate to maintain TF 140</td>
<td>Concentrate PN kcal/AA in 100ml/kg; run at adjusted rate to maintain TF 140</td>
</tr>
<tr>
<td>What to do if feeds held?</td>
<td>Return TPN to NPO rate (TF140)</td>
<td>Run TPN at 100ml/kg; piggyback additional D5% to maintain TF140 until new PN compounded.</td>
</tr>
<tr>
<td>Preferred feeds?</td>
<td>Unfortified EBM; HMF added at EN 100-120 ml/kg</td>
<td>Unfortified EBM; HMF added at EN 100-120 ml/kg</td>
</tr>
</tbody>
</table>

Nutritional Guidelines during Transition

<table>
<thead>
<tr>
<th></th>
<th>Old Guidelines</th>
<th>Revised Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to write PN order?</td>
<td>TF 140 as if infant NPO; run PN at lower rate to maintain TF 140</td>
<td>Concentrate PN kcal/AA in 100ml/kg; run at adjusted rate to maintain TF 140</td>
</tr>
<tr>
<td>What to do if feeds held?</td>
<td>Return TPN to NPO rate (TF140)</td>
<td>Run TPN at 100ml/kg; piggyback additional D5% to maintain TF140 until new PN compounded.</td>
</tr>
<tr>
<td>Preferred feeds?</td>
<td>Unfortified EBM; HMF added at EN 100-120 ml/kg</td>
<td>Unfortified EBM; HMF added at EN 100-120 ml/kg</td>
</tr>
<tr>
<td>Demographic/Clinical Factors</td>
<td>Group 1 – Study Group (n=63)</td>
<td>Group 2 - Controls (n=153)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>43 (68)</td>
<td>79 (52)</td>
</tr>
<tr>
<td>Gestational age (week ± SD)</td>
<td>29 ± 2.03</td>
<td>28.8 ± 2.1</td>
</tr>
<tr>
<td>BW (grams ± SD)</td>
<td>1331 ± 339.8</td>
<td>1273 ± 342.6</td>
</tr>
<tr>
<td>Postnatal steroids</td>
<td>2 (3.2)</td>
<td>4 (2.6)</td>
</tr>
<tr>
<td>IVH ≥ Stage 3</td>
<td>0 (0)</td>
<td>8 (5.2)</td>
</tr>
<tr>
<td>BPD</td>
<td>5 (7.9)</td>
<td>11 (7.2)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>4 (6.3)</td>
<td>29 (18.9)</td>
</tr>
<tr>
<td>NEC ≥ stage 2</td>
<td>2 (3.2)</td>
<td>10 (6.5)</td>
</tr>
<tr>
<td>Respiratory support on DOL 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mechanical ventilation</td>
<td>14 (22.2)</td>
<td>42 (27.5)</td>
</tr>
<tr>
<td>CPAP</td>
<td>45 (71.4)</td>
<td>100 (65.3)</td>
</tr>
<tr>
<td>room Air</td>
<td>5 (8.1)</td>
<td>11 (7.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographic/Clinical Factors</th>
<th>Group 1 – Study Group (n=63)</th>
<th>Group 2 - Controls (n=153)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>43 (68)</td>
<td>79 (52)</td>
<td>0.025</td>
</tr>
<tr>
<td>Gestational age (week ± SD)</td>
<td>29 ± 2.03</td>
<td>28.8 ± 2.1</td>
<td>0.462</td>
</tr>
<tr>
<td>BW (grams ± SD)</td>
<td>1331 ± 339.8</td>
<td>1273 ± 342.6</td>
<td>0.256</td>
</tr>
<tr>
<td>Postnatal steroids</td>
<td>2 (3.2)</td>
<td>4 (2.6)</td>
<td>0.82</td>
</tr>
<tr>
<td>IVH ≥ Stage 3</td>
<td>0 (0)</td>
<td>8 (5.2)</td>
<td>0.064</td>
</tr>
<tr>
<td>BPD</td>
<td>5 (7.9)</td>
<td>11 (7.2)</td>
<td>0.859</td>
</tr>
<tr>
<td>Sepsis</td>
<td>4 (6.3)</td>
<td>29 (18.9)</td>
<td>0.019</td>
</tr>
<tr>
<td>NEC ≥ stage 2</td>
<td>2 (3.2)</td>
<td>10 (6.5)</td>
<td>0.327</td>
</tr>
<tr>
<td>Respiratory support on DOL 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mechanical ventilation</td>
<td>14 (22.2)</td>
<td>42 (27.5)</td>
<td>0.425</td>
</tr>
<tr>
<td>CPAP</td>
<td>45 (71.4)</td>
<td>100 (65.3)</td>
<td>0.388</td>
</tr>
<tr>
<td>room Air</td>
<td>5 (8.1)</td>
<td>11 (7.2)</td>
<td>0.825</td>
</tr>
<tr>
<td>z-score at birth ± SD</td>
<td>-0.16 ± 0.59</td>
<td>-0.29 ± 0.52</td>
<td>0.117</td>
</tr>
<tr>
<td>z-score at DOL 7 ± SD</td>
<td>-0.97 ± 0.48</td>
<td>-1.03 ± 0.46</td>
<td>0.401</td>
</tr>
<tr>
<td>z-score at start of transition ± SD</td>
<td>-1.02 ± 0.52</td>
<td>-1.1 ± 0.47</td>
<td>0.254</td>
</tr>
<tr>
<td>z-score at end of transition ± SD</td>
<td>-1.1 ± 0.55</td>
<td>-1.3 ± 0.52</td>
<td>0.0078</td>
</tr>
<tr>
<td>z-score at CGA 35 wk ± SD</td>
<td>-1.2 ± 0.73</td>
<td>-1.5 ± 0.85</td>
<td>0.0036</td>
</tr>
</tbody>
</table>
Demographic/Clinical Factors

<table>
<thead>
<tr>
<th>Demographic/Clinical Factors</th>
<th>Group 1 – Study Group (n=63)</th>
<th>Group 2 - Controls (n=153)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>43 (68)</td>
<td>79 (52)</td>
<td>0.025</td>
</tr>
<tr>
<td>Gestational age (week ± SD)</td>
<td>29± 2.03</td>
<td>28.8±2.1</td>
<td>0.462</td>
</tr>
<tr>
<td>BW (grams ± SD)</td>
<td>1331±339.8</td>
<td>1273±342.6</td>
<td>0.256</td>
</tr>
<tr>
<td>Postnatal steroids</td>
<td>2 (3.2)</td>
<td>4 (2.6)</td>
<td>0.82</td>
</tr>
<tr>
<td>IVH ≥ Stage 3</td>
<td>0 (0)</td>
<td>8 (5.2)</td>
<td>0.064</td>
</tr>
<tr>
<td>BPD</td>
<td>5 (7.9)</td>
<td>11 (7.2)</td>
<td>0.859</td>
</tr>
<tr>
<td>Sepsis</td>
<td>4 (6.3)</td>
<td>29 (18.9)</td>
<td>0.019</td>
</tr>
<tr>
<td>NEC ≥ stage 2</td>
<td>2 (3.2)</td>
<td>10 (6.5)</td>
<td>0.327</td>
</tr>
</tbody>
</table>

Results: Trends in z-score

- Weight gain: 16.1 ± 4.6 gm/kg/day *
- Weight gain: 13 ± 5.6 gm/kg/day

* p<0.01
Results: Protein-Energy Ratio

EN volume (ml/kg)

Protein-Energy Ratio (gm/100kcal)

- Controls
- Study Group
NICU Nutrition: Summary of Newer Trends

Parenteral Nutrition
- Start TPN
- Trophic feeds
- Aggressive TPN; protein from birth
- Avoid nutritional deficits/need for catch-up growth

Transitional Period
- Start EN, ↓PN TF 140-150 ml/kg/d
- Advancing EN 100-160 ml/kg/d
- TPN d/c’ed; human milk fortifier added to breastmilk
- Concentrated TPN

Enteral Nutrition
- Goal EN 160-180 ml/kg/d
- High protein HMF
- Protein modulars; PER
- Breastmilk
- Avoiding rapid wt gain

NICU Nutrition Growth Goals: Old vs. New Trends

Old Guidelines:
- Get them to 10th percentile!!

New Guidelines:
- Maintain their growth curve
- Prevent ‘nutrition lags’ at each step of nutrition timeline
- Avoid rapid catch-up growth
Case Study

TPN: cautious advancement of AA, dextrose, IL

MCT oil/rice cereal
Switch EBM to higher kcal formula
Increase volumes of fortified EBM
Goal: catch up to 10th percentile

Weaning TPN

Aggressive TPN; protein from birth

High protein HMF
Protein modulars; PER avoiding rapid wt gain

Concentrated TPN to maintain kcal/pro
Questions?